9 research outputs found

    A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development

    Get PDF
    AbstractThe mammalian pituitary gland originates from two separate germinal tissues during embryonic development. The anterior and intermediate lobes of the pituitary are derived from Rathke's pouch, a pocket formed by an invagination of the oral ectoderm. The posterior lobe is derived from the infundibulum, which is formed by evagination of the neuroectoderm in the ventral diencephalon. Previous studies have shown that development of Rathke's pouch and the generation of distinct populations of hormone-producing endocrine cell lineages in the anterior/intermediate pituitary lobes is regulated by a number of transcription factors expressed in the pouch and by inductive signals from the ventral diencephalon/infundibulum. However, little is known about factors that regulate the development of the posterior pituitary lobe. In this study, we show that the LIM-homeobox gene Lhx2 is extensively expressed in the developing ventral diencephalon, including the infundibulum and the posterior lobe of the pituitary. Deletion of Lhx2 gene results in persistent cell proliferation, a complete failure of evagination of the neuroectoderm in the ventral diencephalon, and defects in the formation of the distinct morphological features of the infundibulum and the posterior pituitary lobe. Rathke's pouch is formed and endocrine cell lineages are generated in the anterior/intermediate pituitary lobes of the Lhx2 mutant. However, the shape and organization of the pouch and the anterior/intermediate pituitary lobes are severely altered due to the defects in development of the infundibulum and the posterior lobe. Our study thus reveals an essential role for Lhx2 in the regulation of posterior pituitary development and suggests a mechanism whereby development of the posterior lobe may affect the development of the anterior and intermediate lobes of the pituitary gland

    Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo.

    Get PDF
    BACKGROUND Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair, and is associated with an elevated risk of other autoimmune diseases. METHODS To identify generalized vitiligo susceptibility loci, we conducted a genomewide association study. We genotyped 579,146 single-nucleotide polymorphisms (SNPs) in 1514 patients with generalized vitiligo who were of European-derived white (CEU) ancestry and compared the genotypes with publicly available control genotypes from 2813 CEU persons. We then tested 50 SNPs in two replication sets, one comprising 677 independent CEU patients and 1106 CEU controls and the other comprising 183 CEU simplex trios with generalized vitiligo and 332 CEU multiplex families. RESULTS We detected significant associations between generalized vitiligo and SNPs at several loci previously associated with other autoimmune diseases. These included genes encoding major-histocompatibility-complex class I molecules (P=9.05×10−23) and class II molecules (P=4.50×10−34), PTPN22 (P=1.31×10−7), LPP (P=1.01×10−11), IL2RA (P=2.78×10−9), UBASH3A (P=1.26×10−9), and C1QTNF6 (P=2.21×10−16). We also detected associations between generalized vitiligo and SNPs in two additional immune-related loci, RERE (P=7.07×10−15) and GZMB (P=3.44×10−8), and in a locus containing TYR (P=1.60×10−18), encoding tyrosinase. CONCLUSIONS We observed associations between generalized vitiligo and markers implicating multiple genes, some associated with other autoimmune diseases and one (TYR) that may mediate target-cell specificity and indicate a mutually exclusive relationship between susceptibility to vitiligo and susceptibility to melanoma

    Common variants in FOXP1 are associated with generalized vitiligo

    Get PDF
    In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore